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Abstract. Some recent advances in dielectric continuum models for static and dynamic 
aspects of molecular solvation are discussed, and connections with molecular-level solvent 
models are noted. The traditional Born-Onsager-Kirkwood (BKO) model is compared to a 
more flexible model (the so-called frequency-resolved cavity model (FRCM)) which 
assigns distinct inner and outer solute cavities in accommodating, respectively, the 
inertialess (optical) and inertial solvent response. Sample calculations of solvent 
reorganization energy (&) are presented for various thermal and optical electron transfer 
(ET) processes, based on self-consistent reaction field models using molecular orbital (MO) 
or configuration interaction (CI) solvent wave functions. 

1. INTFtODUCTION 

ln this chapter we survey recent solvation theories based on continuum models of 
polar solvents. The discussion includes a comparison of some refined continuum 
models with alternative molecular-level models. Practical applications are illustrated 
for electron transfer (ET) reactions, specifically, for the evaluation of ET solvent 
reorganization energies, which represent an important nonequilibrium solvation 
phenomenon for which experimental data are available. Dynamic applications 
including time-dependent solvent Stokes shifts are also briefly mentioned. 

The main idea inherent in a dielectric continuum model of a polar solvent is to 
introduce a dielectric permittivity as its basic characteristic. The Born theory of a 
solvated spherical ion comprises the simplest and most familiar case, dealing with 
static dielectric constant ~0 as a single medium parameter. ln advanced theories 
designed to provide some account of the internal structure and dynamics of the 
medium, the dielectric function @,w) is introduced. This is a complex-valued 
quantity depending on wave vector k and frequency w [I]. The earlier pioneering 
implementations of this idea [2-51 neglected the important effect of excluded volume 
due to the solute particle. incorporating it in a consistent theory requires, as shown 
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below, a significant extension of the original model. That is to say, the parameters 
determining the size and shape of a cavity, in which the solute particle is embedded 
according to the conventional continuum model, must be treated as dynamical 
variables on equal grounds with the electric field, a background variable of any 
continuum treatment. Only at such a sophisticated level a rational correspondence 
with molecular-level treatments of polar solvents can be gained. 

Due to these cavity effects, the medium response function K(r,r’,w) (where r and 
r’ are space point vectors) for full continuum dynamics becomes a property of the 
combined system, “solute + solvent”, and its relation to the bulk solvent permittivity 
r(k,w) is very complicated. On the other hand, it is the response function (rather than 
4k.w)) which is directly related to the microscopic statistics of solvation [6]. In this 
sense, a conceptual significance of r(k,o) in solvation and ET problems [2-5] is 
reduced significantly. 

Practical computation of equilibrium solvation effects is now readily available in 
terms of the polarized continuum model (PCM) [7, 81, which is also called Bom- 
Kirkwood-Onsager (BKO) theory. It extends Born treatment of spherical ions to 
solutes with arbitrary shapes and charge distributions by directly solving the Poisson 
equation for a given charge distribution (actually, its integral equation counterpart 
[9,10]) with explicit account of matching conditions for relevant electric fields on the 
boundary of the solute cavity. By this means, the cavity effect is accurately 
incorporated at the static level. An extension of the PCM-BKO theory for treating 
nonequilibrium and dynamic solvation effects [lo-151 underlies our presentation in 
Sections 2-4 where its recent developments are considered. For the sake of brevity, 
we omit discussion of dynamic effects of high-frequency inertialess polarization [ 14, 
161. Its time scale is considered to be infinitely fast (the so called Born-Oppenheimer 
approximation [14]) and the corresponding equilibrium contribution is included in all 
calculated solvation energies. In the BO model the fast solvent electrons “see” the 
instantaneous position of the transferring solute electron. In contrast. in the so-called 
SC (self consistent) model [14], the solvent electrons see the smeared out density of 
the transferring electron. For the purpose of evaluating solvent reorganization 
energy, the BO and SC models typically yield similar values, as in the cases 
exemplified in Section 6. 

Although this unified treatment of solvation effects seems to result in a consistent 
theory, its straightforward further refinement meets serious and fundamental 
problems briefly mentioned above. They are discussed in Section 5 in comparison 
with related results of molecular simulation studies. Such studies (e.g., see [17]) are 
of great value in providing perspective in the parameters (generally based in large 
part on empirical fitting) which typically characterize continuum models. 

In applications reported in Section 6, we discuss recent computations based on an 
extension of BKO theory denoted the “Frequency Resolved Cavity Model” (FRCM) 
[18]. This approach (described in Section 4 and the Appendix), which has been 
implemented in conjunction with semiempirical electronic structure models, seems to 
offer a useful compromise between ease of computation and flexibility of the 
underlying physical model, giving access to ET in complex molecular systems. 
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2. CONTlNUUM MODEL FOR POLAR MEDIA IN THE 
FRAMEWORK OF LINEAR RESPONSE 

Static theory 

Let us consider a solute particle with charge distribution p(r) and a polar 
solvent with its polarization equilibrated to p(r). When linear response pertains, the 
inertial potential field associated with the solvent polarization, CD(r), is given by 

CD(r) = &P(r) (1) 

where I? is a nonlocal linear operator, 

itp(r) = jd3rK(r, r’)p(r’) (2) 

Its kernel is a double-point symmetric function, K(r,r’) = K(r’,r), known as Green’s 

function in the theory of the potential [ 191. A treatment of solvation and ET processes 
in terms of Eqs. (1) and (2) was introduced in Ref. [20]. 

In computational practice, these functional relations are implemented in terms 
of a basis set expansion, which is conveniently based on a configuration interaction 
(CI) expansion of the solute wave function y [ 1 O-l 21: 

y = cC,D”; a = l,..., N (3) 
” 

where the D, are properly chosen orthonormal Slater determinants. The 
corresponding charge density expansion is 

P(r) = pbPu* (4 (4) 

where the &, are first order transition density matrix comprised of the respective 
elements of the first order density matrix in the determinantal basis (the electron 
density component). The diagonal elements @&l also include the contributions from 
the nuclear (core) charges. The CI secular equation reads 

i/ CT@))) = w, 1 c(y)) 

cp 
I )> C(k) = : i-1 C$) 

(5) 
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The elements of the Hamiltonian matrix H 

H =H(“+Y ab ub ob (6) 

contain the gas phase component modified (in the case of the BO limit [l&14]) by the 
fully equilibrated inertialess (high-frequency) polarization (the first term) and matrix 
elements of the inertial (low-frequency response field 

(7) 

The eigenvalues Wk and eigenvectors 1 C@),) of Eq. (5) depend parametrically on Y&. 

The set of Y& (a 2 6) can be considered as medium coordinates [lo-121. 
The matrix counterpatt of the Green’s function K(r, r’) is the reorganization 

matrix T with elements 

The T matrix elements can be used to define “inertial” solvation energies; e.g., 

Ii ub.ub ’ Tubob 
=-- 

3 ’ (9) 

represents the equilibrium inertial solvation free energy associated with charge 
density &b. 

The medium polarization self-energy S is a quadratic form of medium 
coordinates [ 121: 

The total free energy surface is expressed in terms of Yab as 

uk( yob) = S(Yob) + Wk(Yab) (11) 

The form of 5’ emphasizes the fundamental importance of the reorganization matrix. 
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Dynamic Theory 

A natural time-dependent extension of the linear response relation (1) is 

a+, t) = kp(r, r) 

ip(r,t) = Jdt Jd3rK(r, r’, t - t’)p(r’, t’) (12) 

Its treatment is most convenient in terms of frequency domain (w) Fourier transforms 
[l J. Let us consider the expansion 

where m&w) are the expansion coefficients determined by conditions of a time- 
dependent experiment; two illustrations are given below. A full analogue of the static 
relation (1) is 

(14) 

where <D(r,w) and P(r,w) are the Fourier transforms, respectively, of @(r,t) and p(r,t), 

and the operator B(w) is defined in terms of its kernel, the complex-valued double- 

point function K(r, r’,co) obtained as a transform of the kernel K(r,r’,t - t’). A 

matrix counterpart of the linear response relation (14) is given by 

(15) 

Here, as usual, the 1.. .)) Id enote column-vectors, Y&w) are the Fourier transforms of 

the time-dependent medium variables Yab(t), and the reorganization matrix T(w) is 
calculated according to the prescription (8) with the kernel K(r,r’, w). 

F’irst Example: The Stokes Shift 

The time-dependent solvent stokes shift is observed when the charge 
distribution changes instantaneously: 

P(r,O = l;aW + WAAr) (16) 

Notations pa(r) and A&) are obvious, O(t) represents the step function. In this case 
m&o) are expressed in lerms of the Fourier transform of O(t). Implementations of 
Eq. (16) to treat Stokes shifts are well known [21,22]; the above technique [23-251 
opens the way for straightforward PCM-BKO computations for solutes with arbitrary 
shapes and charge distributions. 

335 



Second example: The equation of motion for Y&t) 

We derive first the expression for expansion coefficients mob in a system 
“solute + solvent” without external forces. Consider function w(Y&), a solute 
contribution to the FES u(Y&), Eq. (11). (The index labeling an energy level is 

omitted hereafter). According to the Hellman-Feymnan theorem. p = g (a 

functional derivative) [lo]. From Eq. (7) we conclude that 

aw sr,, _ aw p=C--_ 
ar,, m c- ar,, Pob 

Thus 

mob b) = (17) 

where the term on the right is the Fourier transform of the time-dependent. derivative 

ay () 
aw t -. 

ub 

The dynamic equation can now be written as 

(indices “ab” are omitted). This is identical to Eq. (15) supplemented by the vector of 
Gaussian random forces (GRF(o)) in the &representation. It is connected with the 
generalized susceptibility matrix r’(w) via the fluctuation-dissipation theorem. 
Random forces introduce fluctuations in the dynamics of medium coordinates. 

An inverse Fourier transform of Eq. (18) is available provided we find, at a 

static level, a stationary point 1 F)) of the FES U. Eq. (1 1 ), satisfying the relation 

(T( o = 0) = T, the static case): 

T-‘lY))= z 1 ,) 
The regular forces can be linearized in its vicinity: 

1 )i $g =T-'~Y))+A~Y))-IF))) 

(19) 
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In this approximation:, the stochastic equation of motion for variables 

I”Y(~)))=IY(~)))-I’)) is recovered in the time domain [26]. The dynamical 

evolution is governed by the operator (F’ - 7-l) where 

?-’ 1 AY(l))) = jT-’ (t - f’j AY(t’)))di’ , yielding the following set 

Langevin equaiyons, 

( f-l--T-‘)[AY))=-(T-l +A)[AY))+IGRF)) 

of generalized 

The random forces here are in the time domain and the matrix of force constants in 
the regular force is composed of solvent (T’) and mixed solute-solvent (A) 
components (note that the sign convention for T in [23] is opposite to that employed 
here and elsewhere [ 12,18]). 

By this means, the computation of matrix T(w) becomes a key procedure in 
dynamical implementations. As applied to adiabatic ET reactions, the subsequent rate 
calculation for Eq. (21) is available in terms of the Kramer+Grote-Hynes (KGH) 
approximation [27,28]. Such computations for model ET systems with a single 
medium coordinate have been reported [23]. 

3. METHODS FOR CALCULATION OF THE 
REORGANIZATION MATRIX AND THE SOLVATION ENERGY 

The formal scheme as presented in Section 2 furnishes a general approach for 
treatment of equilibrium and nonequilibrium solvation effects in polar media. This 
formulation is independent of the particular computational method invoked to 
perform the linear response relations like Eqs. (1) or (14). The basic quantity of this 
theory is the reorganization matrix T, generally &dependent, and we focus now on 
practical methodologies for its computation. Solute excluded volume must be 
necessarily taken into consideration in such a treatment and the simplest electrostatic 

continuum model to treat operator I? at such a theoretical level is the PCM-BKO 
theory [7,8]. (Simplified treatments like COSMO [29], generalized Born approach 
[30] and others involving different approximations in order to avoid an explicit 
treatment of boundary effects [3 l] could also be employed in this context). The PCM- 
BKO approach expresses the response field CD(r) in terms of the surface charge 
density 4(r’) on the boundary surface C, 

49 @(r) = p2q---q (22) 
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and ois extracted as a solution to the relevant electrostatic integral equation based on 
the solute charge density p [lo]. Because we consider 0(r) as an inertial component 
of the total response field, o is also an inertial quantity 

air’) = at&‘> - a&‘> (23) 

The surface densities ~,r(r’) (total) and CL(~‘) (inertialess) are calculated by solving 
the PCM-BKO equation twice: first. with static dielectric permittivity E= GJ (for qtot) 
and. second. with optical permittivity E= E, (for CL,). The desired elements of the 
static (w = 0) reorganization matrix can then be obtained according to Eq. (8). If the 
initial and final stares in a two-state ET process correspond, respectively, to charge 
densities p and pr, then the solvent reorganization energy & may be expressed as 
[12,18]: 

where ,~f-= p.-- p. For an optical ET process. I$ may be identified with one-half of 
the solvent contribution to the Stokes shift [32,33]. Calculations of $ have been 
reported both for model [12.32] and experimentally studied [33] ET systems. The 
PCM-BKO computations of the dynamic @dependent solvation energies have 
appeared recently [23-251 and compared with observed time-dependent Stokes shifts. 
(note that the original technique developed in [24] is equivalent to the -dependent 
PCM-BKO technique [23,25]). 

More sophisticated continuum approaches include the double-cavity (the 
FRCM scheme [18]) and the nonlocal electrostatic [34] treatments; their tentative 
application to the Stokes Shift kinetics has also been tested [25]. 

A merit of the formulation given in Section 2 is that it applies equally well to 
molecular-level treatment of the response field Q(r). There is no constraint on the 

computational treatment of operator i in Eqs. (1). (13) or (14) except an obvious 
condition that it is linear. Integral equations based on the statistical theory of liquids 
(the modified RISM scheme [35]) have been applied to calculate solvent 
reorganization energies over a wide range of solvent polarity [36]. It would also be of 
interest to implement Eqs. (1) and (12) using molecular dynamics (MD) simulation 
techniques. 

4. THE FRCM APPROACH 

The PCM-BKO treatment of reorganization energies for several 
intramolecular ET reactions proved to be unsatisfactory [33]. When a standard 
parameterization of the cavity size. fitted to reproduce equilibrium solvation energies, 
was applied, the computed reorgamzation energies (non-equilibrium quantities) were 
found to be greatly in excess of experimental estimates. It was concluded that the 
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PCM-BKO approach failed to reproduce both equilibrium and nonequilibrium 
solvation effects within the same parameterization scheme. 

The frequency resolved cavity model (FRCM [18]) was elaborated in order to 
circumvent this deficiency. This method differs from the PCM-BKO method by 
separating the inertialess (high-frequency) response of the medium from the inertial 
(low-frequency) one. The solute is surrounded by two surfaces (Cl and Cl), each of 
which is constructed as a collection of overlapping spheres similar to the PCM-BKO 
model. For the first cavity, contained within the internal surface C 1, the radius of each 
sphere is defined as rr = ~r~dw, where K= 0.9 is a universal empirical factor common 
to all solvents and rVdW is the van der Waals radius of the particular solute atom. The 
radius r2 defining the external surface C2 is given by 

where 6 is another empirical constant, pertaining to the given solvent (it correlates 
roughly with the characteristic size of a solvent particle). Between the two surfaces 
the medium is represented by the inertialess dielectric constant G,, while outside the 
outer cavity the static dielectric constant ~0 is applied. The layer between the surfaces 
corresponds roughly to the first solvation shell. Calculation of the potential field a.(r) 
in this scheme amounts to simultaneously solving two equations describing charge 
densities on the two cavities, namely q (on the inner surface) and 02 (on the outer 
one); they contribute additively to the total B(r) in terms of two equations similar to 
Eq. (22). More details about the FRCM technique, including the formulation of the 
inertial field component, are given in the Appendix. 

A simple illustration of this approach is a spherically symmetric Born-like 
case (a point ion of charge Q placed at the center of two concentric spheres of radii rl 
and r2). The total soivation energy [ 18,371, 

(26) 

is naturally divided into inertialess and inertial contributions; it reduces to the Born 
expression when rr = rz. The extra cavity parameter, namely the width 6 of the 
intersurface layer in Eq. (25), brings additional flexibility in accounting 
simultaneously for both equilibrium solvation energies and the nonequilibrium ET 
reorganization energies [ 181 (see also section 6). 

5. A CONNECTION TO MICROSCOPIC TREATMENTS OF 
SOLVENT STRUCTURE 

A nonlocal electrostatic theory [38, 391 is a conventional way to bring 
elements of internal solvent structure into a continuum solvent model. In the static 
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case, the dielectric function 4(k) carries all the information about the solvent 
structure. Its simplest Lorentzian version is 

E(k)=.c, + &!I 7” 
1 + (ti)Z 

(27) 

where the parameter /i is called -‘the correlation length” and is interpreted as a 
measure of size of a solvent particle. More detailed description with several 
Lorentzian terms can be also considered [39]. In real space, the inverse Fourier 
transform of E(k). namely the nonlocal kernel ~(r - r’), is an exponentially 
decreasing function of distance jr - r’j. 

For a spherical ion of radius rl the expression for solvation energy is available 
either in terms of an approximate nonlocal approach in which the treatment of the 
excluded volume effect is incomplete [38, 391 or by an accurate treatment of 
matching conditions on the boundary of the spherical cavity [40]. In both theories this 
expression depends on the parameter 

which is a ratio of characteristic lengths of solvent and solute particles. It is not 
possible to find such a relationship in local theories, where 77 = 0. On the other hand. 
even in simple molecular theories based on the “mean spherical approximation” 
@ISA) [4l]this ratio appears naturally, with the solvent particle modeled as a hard 
sphere having radius 1. 

Recent studies based on microscopic molecular solvent models [42] have 
brought into doubt the validity of Lorentzian model for a dielectric function r(k), 

revealing that it has a pole structure with terms proportional to [l -(/uI)’ r’ In real- 

space this leads to an oscillatory behavior of the nonlocal kernel r(lr - r’l). When 
inserted in a nonlocal theory, such oscillating kernels result in an irregular behavior 
of the salvation energy as a function of ion radius TI [40,43]. This problem has been 
eliminated 1401 by employing a variational solvation model. in which the variational 
free energy functional includes as variables both the solvent polarization field and the 
cavity radius on an equal footing(this idea has been independently elaborated [44] in 
a different way). Smooth solvation curves were obtained by this technique. 

The experience gained by studying these advanced models draws to the 
following conclusions [40]. The addition of pole terms to a Lorentzian dielectric 
function violates the positive definiteness of the integral operator governing the basic 
equation of a nonlocal theory with excluded volume. Modifications of the cavity 
model tend to restore the correct properties of the integral kernel. or, at the very least, 
serve to approach them as closely as possible. On the basis of simple physical 
reasoning, we observe that oscillations introduced by the poles of dk), related to real 
spatial correlations inside a solvent, are incompatible with the frozen cavity model, in 
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which the radius YI is considered as an intrinsic property of a given solute ion. The 
above modifications of the cavity model introduce more flexibility by allowing for 
the mutual adjustment of the cavity size and solvent structure in the vicinity of the 
ion. 

For practical applications this notion suggests that simple Lorentzian models 
of 4(k), in which the above-mentioned instabilities are absent (the corresponding 
Lorentzian integral kernels are positive-definite), seem to have a rational justification 
and may serve as a basis for a semiempirical continuum solvation theory like the 
FRCM model. 

A complicated oscillatory behavior of a dielectric function in real liquids 
arises due to the interference of polarization and density fluctuations [45]. In the 
vicinity of the solute, according to the mechanism described above, the fluctuations 
of the cavity are strongly correlated with the solvent density fluctuations. To a 
significant extent, these fluctuations cancel each other, leaving the orientational 
polarization as the dominant in the effective solvent field. By this means (returning to 
the notation of section 2) we may infer that an effective Lorentzian dielectric function 
mimics the response function K(r,r’,w) (or matrix T(w)), a property of a combined 
system (“solute + solvent”) rather than the bulk permittivity .$&IL;w), which represents 
the pure solvent and displays a much more complicated behavior in real space. 

We conclude that the idea of a cavity possessing a definite shape and a fixed 
boundary surface seems to be the weakest point of continuum solvent models. Its 
consistent elaboration in terms of compensating fluctuations needs a very 
sophisticated theory, which would not likely be practical. The corresponding higher 
order effects, to the extent that they are considered important, are better addressed in 
terms of molecular simultitions. 

6. SAMPLE CALCULATIONS OF SOLVENT REORGANIZATION 
ENERGY 

Earlier work [18] has demonstrated the ability of the FRCM scheme to 
describe simultaneously both equilibrium (solvation energies) and non-equilibrium 
(ET reorganization energies) solvation effects after a proper choice of parameters in 
Eq. (25) was made. Both methods of treatment of the inertialess polarization (either 
the SC or the BO approximation) resulted in practically the same values for solvent 
reorganization energies. 

As an illustration of the application of the above techniques, we now report 
the evaluation of the solvent reorganization energy (&) for intramolecular ET 
involving both ground and electronically excited states of some donor-bridge- 
acceptor (DBA) systems. The results shown below were chosen to exemplify the 
sensitivity of 1, magnitude to various features of the DBA system or the continuum 
model adopted. Some comparison with experiment is also provided. 
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Ia 

Ib 
Figure 1. Structures of Series I. Urdabelled large dark (small light) spheres denote. respectively C and 
H atoms. The D and A groups are, respectively, the dimethoxy (left hand side) and dicyano vinyl 

(right hand side) moieties. See also [46]. 

Variation of & with D/A separation 

Table 1 illustrates the pronounced dependence of &, for a given D/A pair on 
the effective distance separating the D and X sites, as expected from the simple 2- 
sphere Marcus model [5,18]. The calculated dipole moment shift seems to yield a 
distance very similar to that based on the center-to-center separation. For both 
systems (Ia and Ib in Fig. 1) the quantum calculations yield essentially identical 
results for the forward photoinitiated charge separation (CS: D*BA -+ D’BA-) and 
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TABLE 1. Calculated & for ET in Ia and Ib in THF solvernab: Dependence on D/A Separation (rua). 

Structure IDA (A) d 

Ia 0.49 12.1 12.9 
Ib 0.33 8.3 8.4 

’ To the precision displayed the same results were obtained for CS and CR in each system (Ia and 

ib). 
FRCM calculations based on configuration interaction (CI) employing single excitations 

involving the highest five ‘occupied and lowest five unoccupied MO’s of the ground state self 
consistent field (SCF) wavefunction, using the AM1 Hamiltonian [47] at the SC level (see 
Section 1) and dielectric constants given in [48]. 
’ Calculated shift in state dipole moment for CS and CR processes. 
d Center-to-center D/A separation. 

back charge recombination (CR: D+BA- + DBA) processes. In general, CS and CR 
processes may be expected to yield distinct d, and A,u values. 

Variation of ;1, with D/A type 

Table 2 shows the appreciable variation in /2, and A,u associated with six 
different combinations of aromatic D and A groups for a given bridge moiety (Fig. 2). 
Once again (see Table 1) an inverse relationship between ;1, and D/A separation is 
displayed, with similar estimates of the latter based on Ade and center-to-center 
distance (&I_ The calculated and experimental results [49] are seen to be in close 
accord. 

TABLE 2. Comparison of Calculated and Experimental & Values for Charge Shift ET 
(DBA + DBA-) in Series II in THF Solvent 

Da Aa 

BP Q 
BP N 
2-F Q 
2-F N 

;1, (eV) 
talc.” exp.” 

A,u /e (A) d roA (A) ’ 

0.49 10.7 10.7 
0.50 

0.5o=t.o3 
11.7 11.8 

0.46 10.6 10.7 
0.49 

0.49zk.03 
11.9 11.8 

9-sF 
9-SF 

’ See Fia. 2. 

Q 0.37 7.6 7.6 
N 0.40 

0.40*.03 
8.8 8.5 

b Calcuked SCF results based on the PM3 Hamiltonian [47] (the present SCF results, based on the 
exact implementation of the FRCM model (see the Appendix), differ slightly from the approximate 
FRCM results presented in [ 181). 
’ Experimental values obtained in 2-methyl tebahydrofkran subject to assumption of a common & 
value for Q and N acceptors (for given donor) and similar values (to within 0.01-0.02 eV) of ,$ for 
B- and 2-F- donors (for a common Q acceptor) [49]. 
d See footnote c in Table 1. 
e See footnote d in Table 1. 
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Figure 2. Molecular fragments serving as donor (left), bridge (center), or acceptor (right) groups in 
structures of Series II. 

Sensitivity of II, to Continuum Model 

Table 3 shows the considerable difference in /1, magnitude based on the 
FRCM model [ 181 and the conventional PCM-BKO model. [&IO]. Furthermore, 
failure to impose full treatment of dielectric boundary conditions is seen to cause 
error of up to -20% for the case shown (ET with D = Bp and A = N). 

TABLE 3. Dependence of A, magnitude on continuum model for the charge shift ET process in 
Series II (D = Bp, A = N) in THF. 

Continuum model 1, (eV) 

FRCM? full b 0.48 
neglect of Sr2 term ’ 0.46 

uniform d 0.37 
PCM-BKO full b 1.21 

uniform d 0.98 

a See Fig 2 and footnote b in Table Zb Full treatment of dielectric boundary conditions. 
b Full treatment of dielectric boundary conditions. 
’ See Appendix. 
d Approximate treatment of dielectric boundary conditions [ 181. 
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Variation of 1, with temperature 

The extent of temperature variation of ;1,, based both on theoretical models 
and experimental results, has been the subject of recent investigations [50-521. While 
the temperature dependence of dielectric constants (~g and G,) implies a positive 
temperature derivative & for moderate to strongly polar solvents, based on PCM- 
BKO or FRCM models, recent theoretical analysis [50] points to the dominant role of 
density fluctuation in leading to a negative temperature derivative, in conformity with 
inferences based on recent experimental studies [51,52]. In a preliminary attempt to 
account for such a negative slope within the framework of the FRCM model, we 
consider the following expression, 

_(?s),+($L),g 2 (29) 

where the first term on the right hand side includes the temperature dependence of ~0 
and G,, and where 6 is the parameter characterizing the solvent-dependent radius 
controlling the inertial response in the FRCM model [IS] (Eq. (25)). Table 4 offers an 
example based on ET in species III (DBA -+ D+BA-) 

III 

where D and A refer to the thio and dicyanovinyl moieties) [52]. For this process a 
value of dGldT = 0.0042 &K is found to reproduce the experimental value of d&ldT 

TABLE 4. Modelling temperature variation of & in terms of temperature dependent 6 parameter: 
optical ET in III” in acetonitrile. 

talc. b exp. ’ 

;E, (eV) &YdT (A/K) ;1, (ev) d;l, /dT ( 1 0e3eV/K) 

0.35 0.0042d 0.52= -0.77 
a DBA -+ D”BA-, where in III, the D and A sites are localized respectively, in the vicinity of the 
thio and dicyanovinyl moieties. 
b Based on CI calculation using AM1 Hamiltonian 1471. 
’ Obtained from combined use of absorption and emission data [52]. 
d Obtained from a quadratic fit to results obtained for a finite grid of T (298 f 20 K) and S 
(I .8 3~ 0.05 A) values. 
e Obtained by subtracting an estimated molecular contribution (0.45 eV) from total reorganization 
energy [52]. 
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when combined with the other quantities in Eq. (29), which are obtained from FRCM 
configuration interaction (CI) calculations, A connection of this phenomenological 
interpretation of the temperature trend in ;1, to a molecular theory can be recognized 
from the fact that 6is closely related to an effective correlation length associated with 
the size of solvent particles (Section 5). This correlation length is strongly influenced 
by temperature-dependent fluctuations of the density and orientation of the solvent 
molecules. See also the work on aqueous acid reported in [53], which implied a small 
increase of effective solute radius with temperature. For related discussion of cavity 
fluctuations see [44]. 

7. DISCUSSION 

The examples in the previous section demonstrate the versatility of the 
combined, self-consistent use of flexible quantum chemical and reaction filed 
techniques in addressing ET processes for a variety of chemical situations, 
including different types of solvents, donor/acceptor pairs, and electronic states 
(both ground and excited). A preliminary attempt to model the temperature 
dependence of d, has been made, based on the idea of a temperature dependent 
cavity radius. All of these examples, together with the discussion given in Section 
5, make clear the importance of systematic efforts to employ suitably designed 
molecular level simulations as a mean of evaluating the parameters defining 
continuum solvation models (e.g., see [ 171). In this manner, one may hope to 
reduce the level of empiricism characteristic of continuum models in use at 
present, leading to a rational basis for formulating a molecular cavity as a joint 
property of a given solute-solvent pair, taking due account of factors such as the 
charge and electronic state of the solute species, the role of different frequency 
domains of the medium response, and the temperature and pressure of the system. 
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APPENDIX 

For two charge densities q and 02 distributed over surfaces Cl and X2,, 
respectively, the FRCM integral equations are [IS]: 

(r E c,) C-41) 64 
Here $ denotes the normal derivative relative to the corresponding surface and 

a@)=! 

3 , p(r’> 

r jT-- 
642) 

is the vacuum potential due to the solute charge p(r). Surface integral operators J?~ ; 

i, j = 1,2 are explicitly defined in [ 181. The only comment required here is that cross 
* ,. 

terms S,2~2 and S,,cr, represent the interaction between q and 02. 

The total response field is 

@m,(r) = Ql (r) + Q,(r) WI 

where 

644) 

The inertial component alf iD,,(r) is found as the difference of total and inertialess 
fields: 

Q(r) = @p,,,(r) + a’, (1) G45) 

where 

The inertialess charge density CL@) is located on Cl and defined in terms of the 
PCM-BKO equation with single surface ,X1 : 
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(A7) 

In general, 01 is composed of inertialess ( om) and inertial (q - om> 

components. One can see. however. that. provided the interaction term .!?,,a, can be 

neglected in the first Eq. (A 1 ), then 

CT, =(T, 

0, = 0 
(As) 

where cr is the inertial charge density entirely located on CZ. This is an essence of so 

called “the intermediate uniform approximation” [ 181. It becomes the exact procedure 
in spherically symmetric systems. where the explicit separation of inertialess and 
inertial contributions to the solvation energy is readily apparent (see Eq. (26)). 
Different versions and features of the uniform approximation, which extends to 
solutes with arbitrary shapes and charge distributions the simplifications inherent in 

spherically symmetric solutes, are discussed in [ 181 and [54]. 
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